You dont have javascript enabled! Please download Google Chrome!
Άθροισμα Γωνιών Κυρτού Πολυγώνου

Άθροισμα Γωνιών Κυρτού Πολυγώνου

Κυρτή λέγεται η γωνία η οποία παίρνει τιμές μεγαλύτερες του μηδέν και μικρότερες από 180ο. Κυρτό ονομάζεται ένα πολύγωνο το οποίο έχει όλες τις γωνίες του κυρτές. Παρακάτω θα μελετήσουμε τη συμπεριφορά των εσωτερικών και των εξωτερικών γωνιών ενός κυρτού πολυγώνου, δίνοντας παραδείγματα ενός τριγώνου, τετραπλεύρου, πενταγώνου, εξαγώνου και επταγώνου. Μετά την ολοκλήρωση των δραστηριότητων θα είμαστε […]

Γωνίες με Πλευρές Κάθετες

Γωνίες με Πλευρές Κάθετες

Δραστηριότητα Οι ευθείες ε1 και ε2 είναι μεταξύ τους κάθετες. Οι ευθείες ε3 και ε4 είναι μεταξύ τους κάθετες. Να μετακινήσετε το δρομέα με την ένδειξη “Σημείο Α”  και να παρατηρήσετε τις σχέσεις των γωνιών του σχήματος καθώς αυτό μεταβάλλεται. Διαπιστώνουμε ότι: Δύο γωνίες που έχουν τις πλευρές τους κάθετες είναι: Ίσες αν είναι και οι δύο οξείες. Ίσες αν είναι […]

Οξείες Γωνίες Ορθογωνίου Τριγώνου

Οξείες Γωνίες Ορθογωνίου Τριγώνου

Οι οξείες γωνίες κάθε ορθογωνίου τριγώνου είναι μεταξύ τους συμπληρωματικές. Δραστηριότητα 1 Μετακινώντας τον δρομέα με την ένδειξη “Μετακίνηση” να παρατηρήσετε τη σχέση που έχουν οι οξείες γωνίες του τριγώνου ΑΒΓ. Μπορείτε να μετακινήσετε τις κορυφές Β και Γ του τριγώνου ώστε να παρατηρήσετε αν υπάρχουν μεταβολές στη σχέση των παραπάνω γωνιών. Δραστηριότητα 2 Μετακινώντας τον δρομέα με […]

Εξωτερική Γωνία Τριγώνου

Εξωτερική Γωνία Τριγώνου

Κάθε εξωτερική γωνία ενός τριγώνου είναι ίση με το άθροισμα των δύο απέναντι εσωτερικών. Δραστηριότητα 1 Να μετακινήσετε αρχικά τον δρομέα με την ένδειξη “Μετακίνηση Α” και στη συνέχεια τον δρομέα με την ένδειξη “Μετακίνηση Β” μέχρι το τέλος ώστε να εκτελεστεί η διαδικασία. Παρατηρούμε ότι το άθροισμα των γωνιών Α και Β του τριγώνου ΑΒΓ  είναι ίσο με την […]

Άθροισμα Γωνιών Τριγώνου

Άθροισμα Γωνιών Τριγώνου

Tο άθροισμα των γωνιών κάθε τριγώνου είναι πάντα σταθερό και ίσο με 2 ορθές. Δραστηριότητα 1 Μετακινώντας τον δρομέα με την ένδειξη “Είδος” θα δημιουργήσετε ένα οξυγώνιο, ένα ορθογώνιο ή ένα αμβλυγώνιο τρίγωνο. Σε κάθε περίπτωση να μετακινήσετε τον δρομέα με την ένδειξη “Μετακίνηση” μέχρι το τέλος ώστε να εκτελεστεί η διαδικασία. Παρατηρούμε ότι το άθροισμα των γωνιών κάθε τριγώνου που […]

Οι Τρείς Παρεγγεγραμμένοι Κύκλοι ενός Τριγώνου

Οι Τρείς Παρεγγεγραμμένοι Κύκλοι ενός Τριγώνου

Σε κάθε τρίγωνο υπάρχουν τρία παράκεντρα και κατά συνέπεια τρεις παρεγγεγραμμένοι κύκλοι.   Δραστηριότητα Στο παρακάτω σχήμα έχουμε κατασκευάσει τους τρεις παρεγγεγραμμένους κύκλους του τριγώνου ΑΒΓ . Μετακινείστε τις κορυφές του τριγώνου ΑΒΓ και να παρατηρήσετε τις μεταβολές των γωνιών καθώς και την εικόνα των παρεγγεγραμμένων κύκλων σε κάθε περίπτωση.

Ο Παρεγγεγραμμένος Κύκλος

Ο Παρεγγεγραμμένος Κύκλος

Οι διχοτόμοι δυο εξωτερικών γωνιών ενός τριγώνου και η ημιευθεία που διχοτομεί την τρίτη γωνία του τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που εφάπτεται στη μία πλευρά του τριγώνου και στις προεκτάσεις των δυο άλλων. Η ιδιότητα των εσωτερικών διχοτόμων ενός τριγώνου να διέρχονται από το ίδιο σημείο ισχύει και […]

Ο Εγγεγραμμένος Κύκλος

Ο Εγγεγραμμένος Κύκλος

Οι διχοτόμοι των γωνιών ενός τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που εφάπτεται και στις τρεις πλευρές του τριγώνου. Ο κύκλος αυτός λέγεται εγγεγραμμένος κύκλος του τριγώνου και το κέντρο του, το οποίο λέγεται έγκεντρο, θα είναι το σημείο τομής των διχοτόμων των γωνιών του τριγώνου. Ο εγγεγραμμένος κύκλος βρίσκεται στο εσωτερικό τριγώνου και εφάπτεται […]

Ο Περιγεγραμμένος Κύκλος

Ο Περιγεγραμμένος Κύκλος

Οι τρεις μεσοκάθετοι ενός τριγώνου διέρχονται από το ίδιο σημείο, το οποίο είναι κέντρο κύκλου που διέρχεται από τις κορυφές του τριγώνου. Ο κύκλος αυτός λέγεται περιγεγραμμένος κύκλος του τριγώνου και επιπλέον αποδεικνύεται ότι το κέντρο του είναι ένα σημείο στο οποίο συντρέχουν και οι τρεις μεσοκάθετοι του τριγώνου και λέγεται  περίκεντρο. Δραστηριότητα Στο παρακάτω σχήμα έχουμε κατασκευάσει τον περιγεγραμμένο κύκλο […]

Γωνίες με πλευρές παράλληλες

Γωνίες με πλευρές παράλληλες

Γωνίες με πλευρές παράλληλες Δραστηριότητα 1 Οι ευθείες ε1 και ε2 είναι μεταξύ τους παράλληλες. Οι ευθείες ε3 και ε4 είναι μεταξύ τους παράλληλες. Να μετακινήσετε τα σημεία Α, Β και Δ και να παρατηρήσετε τις σχέσεις των γωνιών του σχήματος καθώς αυτές μεταβάλλονται.   Δραστηριότητα 2 Οι ευθείες ε1 και ε2 είναι μεταξύ τους παράλληλες. Να μετακινήσετε το σημείο Δ […]

error: Alert: Content is protected !!